Disclaimer: We may earn a commission if you make any purchase by clicking our links. Please see our detailed guide here.

Follow us on:

Google News
Whatsapp

Milky Way Galaxy is Not Homogeneously Mixed as Previously Thought

IANS
IANS
Meet the voice behind Indo-Asian News Service (IANS), a storyteller navigating the currents of global events with precision and depth. Crafting narratives that bridge cultures, IANS brings you the pulse of the world in every word

Join the Opinion Leaders Network

Join the Techgenyz Opinion Leaders Network today and become part of a vibrant community of change-makers. Together, we can create a brighter future by shaping opinions, driving conversations, and transforming ideas into reality.

Astronomers have observed the composition of the gases in our galaxy and have shown that they are not homogeneously mixed, contrary to the models established until now.

To understand the history and evolution of the Milky Way, astronomers have been studying the composition of the gases and metals that make up an important part of our galaxy. Three main elements stood out: the initial gas coming from outside our galaxy, the gas between the stars inside our galaxy – enriched with chemical elements -, and the dust created by the condensation of the metals present in this gas.

“Until now, theoretical models considered that these three elements were homogeneously mixed and reached the Solar composition everywhere in our galaxy, with a slight increase in metallicity in the centre, where the stars are more numerous,” added Patrick Petitjean, a researcher at the Institut d’Astrophysique de Paris, Sorbonne University in Paris, France.

For 25 hours, a team of scientists observed the atmosphere of 25 stars using Hubble and the Very Large Telescope (VLT) in Chile. They found that the dust cannot be counted with these spectrographs, even though it contains metals.

Therefore, a team at the University of Geneva (UNIGE) in Geneva, Switzerland, developed a new observational technique and demonstrated that these gases are not mixed as much as previously thought.

“It involves taking into account the total composition of the gas and dust by simultaneously observing several elements such as iron, zinc, titanium, silicon and oxygen. Then we can trace the quantity of metals present in the dust and add it to that already quantified by the previous observations to get the total,” said Annalisa De Cia, Professor in the Department of Astronomy at the UNIGE.

The environment that makes up the Milky Way combines the metals produced by the stars, the dust particles that have formed from these metals, and gases from outside the galaxy that regularly enter it, they explained.

As a result of the findings, detailed in the journal Nature, simulations of the Milky Way’s evolution will have to be modified.

“This discovery plays a key role in the design of theoretical models on the formation and evolution of galaxies,” said Jens-Kristian Krogager, a researcher at the UNIGE’s Department of Astronomy.

“From now on, we will have to refine the simulations by increasing the resolution, so that we can include these changes in metallicity at different locations in the Milky Way,” Krogager added.

Join 10,000+ Fellow Readers

Get Techgenyz’s roundup delivered to your inbox curated with the most important for you that keeps you updated about the future tech, mobile, space, gaming, business and more.

Recomended

Partner With Us

Digital advertising offers a way for your business to reach out and make much-needed connections with your audience in a meaningful way. Advertising on Techgenyz will help you build brand awareness, increase website traffic, generate qualified leads, and grow your business.

Power Your Business

Solutions you need to super charge your business and drive growth

More from this topic