NASA’s Fermi: Tracing a Neutrino to its sources from blazing galaxies outside the universe

Cosmic Neutrino

Have you not upgraded your website to HTTPS yet? Upgrade NOW.

Google with its Chrome 68 update to show all HTTP websites as NOT SECURE. Avoid Google's penalty by installing an SSL Certificate. Get a DigiCert Standard SSL and secure your website at just $157/year. BUY NOW

ADVERTISEMENT
DAILY BRIEF
Get daily updates straight in your inbox.

One of the great mysteries in science is determining what creates the signals that we detect here on Earth. And for the first time Scientists using NASA’s Fermi Gamma-ray, Space Telescope detects the source of the high-energy Neutrino which traveled 3.7 billion years before being identified on Earth.

For centuries we’ve been known that peeping through the universe is cosmic rays; originates far beyond our Galaxy. While scientists have been able to unfold some sources of the particles the majority ones that are most energetic, remained a mystery until now as the IceCube Collaboration could detect a cosmic neutrino and identify its sources.

The IceCube collaboration, on September 22, 2017, detected an ultra-high-energy neutrino that arrived at the South Pole and was able to identify its source. When a series of gamma-ray telescopes looked at that same position, they not only saw a signal, they identified a blazar, which happened to be flaring at that very moment. At last, humanity has discovered at least one source that creates these ultra-energetic cosmic particles.

Related

High-energy neutrinos are hard-to-catch particles that scientists think are created by the most powerful events in the cosmos, such as galaxy mergers and material falling onto supermassive black holes. They travel at speeds just shy of the speed of light and rarely interact with other matter, allowing them to travel unimpeded across distances of billions of light-years.

The discovery of the Cosmic Neutrino was done by an international team of scientists using the National Science Foundation’s IceCube Neutrino Observatory at the Amundsen-Scott South Pole Station.

It is important for scientists to study about neutrinos, cosmic rays, and gamma rays in order to have a better understanding of the turbulent cosmic environments such as supernovas, black holes, and stars.

The most extreme cosmic explosions produce gravitational waves, and the most extreme cosmic accelerators produce high-energy neutrinos and cosmic rays. – Regina Caputo, the analysis coordinator for the Fermi Large Area Telescope Collaboration.

In every cubic centimeter of space, hundreds of ghostly, tiny-massed particles known as  Cosmic neutrinos can be found, and since its proposal in 1930, scientists were unable to detect the source of the neutrino, until now where we find a new scientific field, that of high-energy neutrino astronomy, officially launching with this discovery. One of the major goals in building IceCube was to identify the sources of high-energy cosmic neutrinos, and that’s one cosmic dream that’s at last been achieved.

Source: NASA

NASA’s Fermi: Tracing a Neutrino to its sources from blazing galaxies outside the universe